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Introduction

General questions:
» Can one always compute the spectrum of an operator?
> (later)

‘H Hilbert space, 2 = some class of operators on H.

» Does there exist a sequence (I'y) of computer algorithms s.t.

Fn(T) = o(T) forall TeQ?



Introduction

Definition: A computational (spectral) problem consists of

» Class of operators €2,
» Spectral function T — o(T),

> A set A of input information
(e.g. matrix elements: T — (ej, Tej)).

Definition: An Algorithm is a map
[ Q — [closed subsets of C]
such that
» [(T) depends only on finitely many f € A,

» [(T) can be computed using finitely many arithmetic operations on these
f(T).




Introduction

Example:
» 7 = (?(N) with canonical basis,

» Q=K(H) (compact operators),
> AN={T (e, Tej)}ijen

Algorithm:! Let N € N and choose lattice Ly := +;(Z + iZ)NBy(0) and
Hpy = span{ei, ..., en}.

rn(T):={z e tn|(z= PuThu) | > N}

Can show: I'y(T) — o(T) in Hausdorff sense.

![Ben-Artzi-Colbrook-Hansen-Nevanlinna-Seidel(2015)]



Introduction

~> Recap of strategy:

» Start with infinite matrix,
» Truncate matrix to finite size,
» Compute spectral approximation for truncated matrix,

P Let truncation size go to co.

Does this always work?
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Counterexample

Claim: There exists no sequence of algorithms (I'y) s.t.
Tnv(T) = o(T) forall T e B(H)

Proof:! By Contradiction. Assume that 3Ty and construct “diagonal sequence” operator.
y g

![Ben-Artzi-Colbrook-Hansen-Nevanlinna-Seidel (2015)]
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Counterexample

» -~ bounded operator A with o(A) = {0, 2};
» but I'y(A) ~ {0,1,2} for infinitely many N.

~ Different levels of computational complexity for the classes K(H) vs. B(H).



Motivation

» ~~ Allow more than 1 limit:3

» Approximate o(A) by

lim - lim FN N
NkHOO Ni—o00 Lo

where 'y, n, is algorithm.

Definition: Solvability Complexity Index (SCI) is smallest number of limits
needed to solve the computational problem.

3[Doyle-McMullen(1989)], [Hansen(2011)]
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Background

Finding roots of polynomials:

» [Smale, Bull. AMS (1985)]: Newton's method not generally convergent in
dimension d > 2.
~ Does there exist a generally convergent purely iterative algorithm?

» [McMullen, Ann. Math. (1987)]: YES for d = 3, NO otherwise.
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Background

» [Doyle & McMullen, Acta Math. (1989)]: The cases d = 4,5 can be solved by
towers of algorithms:

“A tower of algorithms is a finite sequence of generally convergent algorithms, linked
together serially, so the output of one or more can be used to compute the input to the
next. The final output of the tower is a single number, computed rationally from the
original input and the outputs of the intermediate generally convergent algorithms.”
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Back to Spectra:

» ~~ Allow more than 1 limit:3

» Approximate o(A) by

lim - lim FN N
NkHOO Ni—o00 Lo

where 'y, n, is algorithm.

Definition: Solvability Complexity Index (SCI) is smallest number of limits
needed to solve the computational problem.

3[Doyle-McMullen(1989)], [Hansen(2011)]
14



Background

Recent work:

[Hansen(2011)], [Ben-Artzi-Colbrook-Hansen-Nevanlinna-Seidel(2015)]:
» Definition of SCI;
» SClI classification of some (spectral and other) problems;

» wider theory of SCI hierarchy.

[Colbrook-Hansen(2020)], [Colbrook(2020)]:

» SCI classification for wider classes of spectral problems: computing spectra,
spectral measures, spectral gaps, ...

15



SCI for Resonances
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SCI for Resonances
Abstract and numerical study of resonance problems have long history:

[Aguilar-Combes(1971)], [Balslev-Combes(1971)], [Simon(1973)]:
» Identify resonances as eigenvalues of an associated non-selfadjoint operator;

» ~~ method of complex scaling;

[Hislop-Martinez(1991)]:
» Explicit asymptotics for resonances of Helmholtz resonators

[Brown-Eastham(2000)]:

» 1-d numerical computation of resonances based on complex scaling.

[Bindel-Zworski(2007)]:

» MATLAB package for computing 1-d resonances by solving associated quadratic
eigenvalue problem.

Textbooks: [Hislop-Sigal(1996)], [Dyatlov-Zworski(2019)]
And MANY others...

17



SCI for Resonances

> Scattering resonances of a Schrédinger Operator H = —A + V on L2(RY) are
poles of the scattering matrix;

» Can be alternatively defined as poles of analytic continuation of
(I + V(=A — z2)71x)™1, where x = 1 on supp(V) and supp(x) compact.

Computational problem [Resl1]:

» Class of operators
Q ={-A+V : ||V]c <C, supp(V) compact}
» Resonance function H — Res(H)

» Input information: A = {V/(x)|x € RY}
+ values of Bessel potential

18



SCI for Resonances

Theorem (Ben-Artzi, Marletta, R. 2020):
The resonance problem [Resl| can be solved in one limit, i.e. SCI(2;) = 1.

Proof:
Explicitly construct algorithm I, that computes resonances:

> Use Bessel potential to write V(—A — z2)~!y as integral operator [p4 K(z;x,*);
P replace the integral kernel by discretised version K,

» prove norm error estimates for K — Kj,;

» determine regions where ||(/ + K,)71|| is large

» Let n — oo.

19



SCI for Resonances

Proof:
» Fix lattice L, C C.

» Algorithm:
Fa(H) = {z € Lo+ [[(1 + Kn(2))H]| > 2 }
» From bound on |V V/|: Error bound |K(z) — Kn(2)| < Cn3;
> then for z, € [,(H), z, — z € C one has ||(1 + Ky(zn)) Y| — o0 ;
» and hence ||(/ + K(z,))~}|| = oo (Neumann series argument).

» = zis pole of (/ + K(z))™?

20
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Numerical Results
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Numerical Results
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Numerical Results
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Numerical Results

Potential
T T T
15 |-
10 |-
5 |
0 | | I I I I I I
-12 -1 -08 -06 -04 —02 0 02 04
Resonances
ol T . T . T 7]
_1 ® |
2 * -
| | | | | | | | | | | |
-12 -10 -8 -6 -4 -2 0 2 4 6 10 12

Our algorithm + [Bindel-Zworski(2007)

24



SCI for Obstacle Scattering

» Consider Dirichlet Laplacian —Ap on L2(R?\ U) for some obstacle U
» Boundary conditions on U induce trapping of waves and hence resonances.

Computational problem [Res2]:
» Class of operators

Qy = {—Ap on L?(R?\ U) : U open, bounded and dU € C?}
» Resonance function H — Res(H)

» Input information: A = {1y(x)|x € R?}
+ values of Hankel functions
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Theorem (Ben-Artzi, Marletta, R. 2020):

The resonance problem [Res2] can be solved in one limit, i.e. SCI(€2) = 1.
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Proof: Explicitly construct algorithm I',, that computes resonances.
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Consider sum of inner and outer Dirichlet-to-Neumann maps associated with
—A — 7% on B\ U;
z is resonance iff ker(Mipner(2) + Mouter(2)) # {0};

transform Minner(2) + Mouter(2) into an operator of the form [ + A(z), with A
Schatten class;

approximate A via finite element procedure on Bg \ U;
compute approximated perturbation determinant det(/ + A(z));
identify regions where det(/ + A(z)) ~ 0;

27



Numerical Results
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Numerical Results

Domain (triangulation via Distmesh [Persson-Strang(2004)]):

29



Numerical Results
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Numerical Results

Helmholtz Resonator: Resonance Locations vs. Opening Width

Resonator chamber: Opening width = 0.60
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Thank You!
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