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Introduction

General questions:
I Can one always compute the spectrum of an operator?
I (later) Can one always compute the scattering resonances of an obstacle?

H Hilbert space, Ω = some class of operators on H.

I Does there exist a sequence (ΓN) of computer algorithms s.t.

ΓN(T )→ σ(T ) for all T ∈ Ω ?
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Introduction

Definition: A computational (spectral) problem consists of
I Class of operators Ω,
I Spectral function T 7→ σ(T ),
I A set Λ of input information

(e.g. matrix elements: T 7→ 〈ei ,Tej〉).

Definition: An Algorithm is a map
Γ : Ω→ [closed subsets of C]

such that
I Γ(T ) depends only on finitely many f ∈ Λ,
I Γ(T ) can be computed using finitely many arithmetic operations on these

f (T ).
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Introduction

Example:
I H = `2(N) with canonical basis,
I Ω = K(H) (compact operators),
I Λ = {T 7→ 〈ei ,Tej〉}i ,j∈N

Algorithm:1 Let N ∈ N and choose lattice LN := 1
N (Z + iZ)∩BN(0) and

HN := span{e1, . . . , eN}.

ΓN(T ) :=
{

z ∈ LN
∣∣∣ ∥∥(z − PNT |HN )−1∥∥ ≥ N

}
Can show: ΓN(T )→ σ(T ) in Hausdorff sense.

1[Ben-Artzi-Colbrook-Hansen-Nevanlinna-Seidel(2015)]
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Introduction

 Recap of strategy:

I Start with infinite matrix,
I Truncate matrix to finite size,
I Compute spectral approximation for truncated matrix,
I Let truncation size go to ∞.

Does this always work?
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Counterexample

Claim: There exists no sequence of algorithms (ΓN) s.t.

ΓN(T )→ σ(T ) for all T ∈ B(H)

Proof:1 By Contradiction. Assume that ∃ ΓN and construct “diagonal sequence” operator.

1[Ben-Artzi-Colbrook-Hansen-Nevanlinna-Seidel(2015)]
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Counterexample

I  bounded operator A with σ(A) = {0, 2};

I but ΓN(A) ≈ {0, 1, 2} for infinitely many N.

 Different levels of computational complexity for the classes K(H) vs. B(H).
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Motivation

I  Allow more than 1 limit:3

I Approximate σ(A) by
lim

Nk→∞
· · · lim

N1→∞
ΓN1,...,Nk ,

where ΓN1,...,Nk is algorithm.

Definition: Solvability Complexity Index (SCI) is smallest number of limits
needed to solve the computational problem.

3[Doyle-McMullen(1989)], [Hansen(2011)]
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Background

Finding roots of polynomials:

I [Smale, Bull. AMS (1985)]: Newton’s method not generally convergent in
dimension d > 2.
 Does there exist a generally convergent purely iterative algorithm?

I [McMullen, Ann. Math. (1987)]: YES for d = 3, NO otherwise.
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Background

I [Doyle & McMullen, Acta Math. (1989)]: The cases d = 4, 5 can be solved by
towers of algorithms:

“A tower of algorithms is a finite sequence of generally convergent algorithms, linked
together serially, so the output of one or more can be used to compute the input to the
next. The final output of the tower is a single number, computed rationally from the
original input and the outputs of the intermediate generally convergent algorithms.”
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Back to Spectra:

I  Allow more than 1 limit:3

I Approximate σ(A) by
lim

Nk→∞
· · · lim

N1→∞
ΓN1,...,Nk ,

where ΓN1,...,Nk is algorithm.

Definition: Solvability Complexity Index (SCI) is smallest number of limits
needed to solve the computational problem.

3[Doyle-McMullen(1989)], [Hansen(2011)]
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Background

Recent work:

[Hansen(2011)], [Ben-Artzi-Colbrook-Hansen-Nevanlinna-Seidel(2015)]:
I Definition of SCI;
I SCI classification of some (spectral and other) problems;
I wider theory of SCI hierarchy.

[Colbrook-Hansen(2020)], [Colbrook(2020)]:
I SCI classification for wider classes of spectral problems: computing spectra,

spectral measures, spectral gaps, ...
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SCI for Resonances
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SCI for Resonances
Abstract and numerical study of resonance problems have long history:

[Aguilar-Combes(1971)], [Balslev-Combes(1971)], [Simon(1973)]:
I Identify resonances as eigenvalues of an associated non-selfadjoint operator;
I  method of complex scaling;

[Hislop-Martinez(1991)]:
I Explicit asymptotics for resonances of Helmholtz resonators

[Brown-Eastham(2000)]:
I 1-d numerical computation of resonances based on complex scaling.

[Bindel-Zworski(2007)]:
I MATLAB package for computing 1-d resonances by solving associated quadratic

eigenvalue problem.

Textbooks: [Hislop-Sigal(1996)], [Dyatlov-Zworski(2019)]

And MANY others...
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SCI for Resonances

I Scattering resonances of a Schrödinger Operator H = −∆ + V on L2(Rd ) are
poles of the scattering matrix;

I Can be alternatively defined as poles of analytic continuation of
(I + V (−∆− z2)−1χ)−1, where χ ≡ 1 on supp(V ) and supp(χ) compact.

Computational problem [Res1]:
I Class of operators

Ω1 = {−∆ + V : ‖V ‖C1 ≤ C , supp(V ) compact}

I Resonance function H 7→ Res(H)

I Input information: Λ = {V (x) | x ∈ Rd}
+ values of Bessel potential
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SCI for Resonances

Theorem (Ben-Artzi, Marletta, R. 2020):
The resonance problem [Res1] can be solved in one limit, i.e. SCI(Ω1) = 1.

Proof:
Explicitly construct algorithm Γn that computes resonances:
I Use Bessel potential to write V (−∆− z2)−1χ as integral operator

∫
Rd K (z ; x , ·);

I replace the integral kernel by discretised version Kn

I prove norm error estimates for K − Kn;

I determine regions where ‖(I + Kn)−1‖ is large

I Let n→∞.
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SCI for Resonances

Proof:
I Fix lattice Ln ⊂ C.

I Algorithm:
Γn(H) =

{
z ∈ Ln : ‖(I + Kn(z))−1‖ > n

1
2d
}

I From bound on |∇V |: Error bound ‖K (z)− Kn(z)‖ < Cn− 1
d ;

I then for zn ∈ Γn(H), zn → z ∈ C one has ‖(I + Kn(zn))−1‖ → ∞ ;

I and hence ‖(I + K (zn))−1‖ → ∞ (Neumann series argument).

I ⇒ z is pole of (I + K (z))−1
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Numerical Results
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SCI for Obstacle Scattering

I Consider Dirichlet Laplacian −∆D on L2(R2 \ U) for some obstacle U

I Boundary conditions on U induce trapping of waves and hence resonances.

Computational problem [Res2]:
I Class of operators

Ω2 = {−∆D on L2(R2 \ U) : U open, bounded and ∂U ∈ C2}

I Resonance function H 7→ Res(H)

I Input information: Λ = {1U(x) | x ∈ R2}
+ values of Hankel functions
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Theorem (Ben-Artzi, Marletta, R. 2020):
The resonance problem [Res2] can be solved in one limit, i.e. SCI(Ω2) = 1.
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U
BR

Proof: Explicitly construct algorithm Γn that computes resonances.
I Consider sum of inner and outer Dirichlet-to-Neumann maps associated with
−∆− z2 on BR \ U;

I z is resonance iff ker(Minner(z) + Mouter(z)) 6= {0};
I transform Minner(z) + Mouter(z) into an operator of the form I + A(z), with A

Schatten class;
I approximate A via finite element procedure on BR \ U;
I compute approximated perturbation determinant det(I + A(z));
I identify regions where det(I + A(z)) ≈ 0;

27



Numerical Results
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Numerical Results

Domain (triangulation via Distmesh [Persson-Strang(2004)]):
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Numerical Results
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Numerical Results
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Thank You!
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